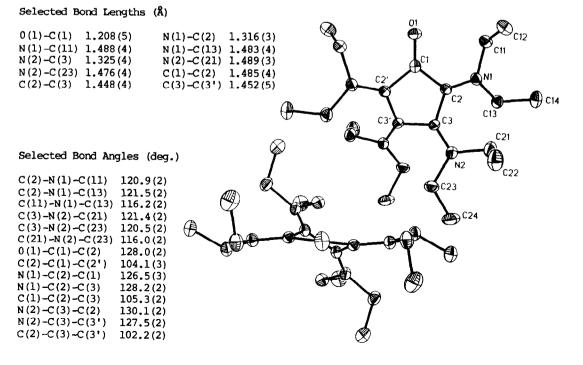

Tetrahedron Letters, Vol. 26, No. 48, pp 5919-5922, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain ©1985 Pergamon Press Ltd.

NOVEL CONJUGATED MOLECULES FROM OXIDATION OF A CYCLOPENTADIENONE IRON TRICARBONYL COMPLEX**

Teresa LePage, Kazuhiro Nakasuji, and Ronald Breslow Department of Chemistry, Columbia University, New York, New York 10027

<u>ABSTRACT</u>: Oxidation of tetrakis-diethylaminocyclopentadienone iron tricarbonyl (1) electrochemically or with nitrosonium hexafluorophosphate afforded the dication of tetrakisdiethylaminocyclopentadienone (3). Oxidation of 1 with bromine and aqueous workup gave diethylaminocyclobutenedione-N,N-diethylcarboxamide (4), which was also formed by the hydrolysis of 3. The structures of the products were confirmed by X-ray crystallography.

Some years ago King reported¹ the facile preparation of tetrakis-diethylaminocyclopentadienone tricarbonyliron (<u>1</u>) from $Fe(CO)_5$ and bis-diethylaminoacetylene. We have been interested in tetraaminocyclopentadienone derivatives for the preparation of stable tripletstate cyclopentadienyl cations², so we examined methods to release the organic ligand from <u>1</u> (Fig. 1). Treatment with amine oxides under a variety of conditions produced <u>2</u>, the hydrolysis product of the tetraaminocyclopentadienone, as the only isolable product³. A report⁴ of the successful electrochemical liberation of the sensitive tetra-tert-butoxycyclopentadienone from its cyclopentadienyl cobalt complex encouraged us to examine the electrochemical oxidation of 1.

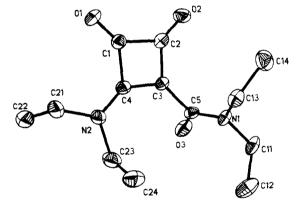

[&]quot;Dedicated to Professor Harry Wasserman on the occasion of his sixty-fifth birthday.

5920

Under strictly anhydrous conditions, constant-current electrolysis of 1 at a Pt mesh anode in 0.1 M LiClO₄/CH₃CN yielded a very polar, water sensitive red compound⁵ that was purified from electrolyte and Fe(III) by trituration with ethyl acetate and recrystallized from CH₃CN/THF. X-ray analysis⁶ (Fig. 2) showed that it was the two-electron oxidation product of the cyclopentadienone, 4,5-bis(diethylamino)-4-cyclopentene-2-one-1,3-bis-(diethyliminium) dication (3) bis-perchlorate. Dication 3 was also prepared by addition of nitrosonium hexafluorophosphate (5 equiv.) to the complex 1 in CH₃CN/CH₂Cl₂. Addition of benzene drove out first Fe(III) salts, then the dication 3 as the bis-hexafluorophosphate⁷. Cyclic voltammetry of the dication 3 at 200 mV/s scan rate⁸ gave a reversible first reduction potential of -0.034 V. vs. SCE, while the complex 1 was <u>oxidized</u> reversibly at +0.563 V. Thus at the potential needed to release the cyclopentadienone, it was easily oxidized to the dication.

The X-ray data show that the four nitrogen atoms in 3 are all nearly coplanar with their attached carbons, the C_3-C_3 , and C_2-C_3 (= $C_2,-C_3$,) bond lengths alternate little, and the N-C(ring) bond distances are all similar, indicating that the total positive charge is delocalized onto all four nitrogens. The somewhat longer C_1-C_2 (= C_1-C_2 ,) bond lengths and the normal short C=O distance of 1.208 Å suggest little electron delocalization onto the carbonyl. The steric bulk of the diethylamino groups is probably responsible for the pronounced puckering of the ring.

<u>FIGURE 2</u> ORTEP diagrams of compound <u>3</u> showing 30% probability thermal ellipsoids, and selected structure data. The molecule has a crystallographic C_2 axis of symmetry corresponding to the C_1 - O_1 bond. The observed perchlorate anions² are not shown.



On gradual diffusion of atmospheric moisture into solutions of 3 in acetonitrile, or by reaction of 1 with Br_2 in CH_2Cl_2 followed by aqueous workup, a colorless, water-stable product was formed. Spectral evidence suggested that it was 4-diethylaminocyclobutenedione-3-N,N-diethylcarboxamide ($\underline{4}$)⁹. The structure was confirmed by X-ray crystallography¹⁰(Fig. 3). This is one of very few cyclobutenedione crystal structures that have been reported¹¹. The amino nitrogen is flat and with its two attached CH_2 groups is coplanar with the ring. It is conjugated with the vinylogous ring ketone as shown by the short C_4 -N₂ and C_2 -C₃ bond lengths, while the carboxamide group is twisted completely out of conjugation with the ring. This product apparently results from a benzilic acid type rearrangement to a 4-membered ring under very mild conditions. A related rearrangement of leuconic acid trihydrate to squaric acid has been observed¹².

FIGURE 3 ORTEP diagram of 4 showing 30% probability ellipsoids, with selected structure data.

Selected Bond Lengths (Å)

0(1)-C(1)	1.189(5)
0(2)-C(2)	1.189(6)
C(1)-C(2)	1.549(7)
C(2)-C(3)	1.457(6)
C(3)-C(4)	1.398(6)
C(1) - C(4)	1.525(7)
N(1)-C(5)	1.303(7)
N(2) - C(4)	1.308(6)
C(3)-C(5)	1.516(6)
0(3)-C(5)	1.233(6)
N(1)-C(11)	1.476(6)
N(1)-C(13)	1.486(6)
N(2)-C(23)	1.490(7)
N(2)-C(21)	1.482(6)

Selected Bond Angles (deg.)

C(5)-N(1)-C(11)	117.5(4)	C(5)-N(1)-C(13)	125.2(4)
C(11)-N(1)-C(13)	117.1(4)	C(4) - N(2) - C(21)	120.3(4)
C(4)-N(2)-C(23)	121.1(4)	C(21) - N(2) - C(23)	117.9(4)
0(1)-C(1)-C(2)	137.2(4)	0(1) - C(1) - C(4)	136.1(4)
C(2)-C(1)-C(4)	86.5(3)	0(2)-C(2)-C(1)	134.8(4)
0(2)-C(2)-C(3)	137.6(4)	C(1) - C(2) - C(3)	87.6(4)
C(2) - C(3) - C(4)	95.1(4)	C(2)-C(3)-C(5)	132.8(4)
C(4)-C(3)-C(5)	132.0(4)	N(2) - C(4) - C(1)	132.0(4)
N(2) - C(4) - C(3)	137.3(4)	C(1) - C(4) - C(3)	90.7(4)
0(3)-C(5)-N(1)	125.7(4)	0(3)-C(5)-C(3)	117.2(4)
N(1)-C(5)-C(3)	117.1(4)		

When an excess of H_20 is added to a solution of the dication <u>3</u> in acetonitrile, the cyclobutenedione <u>4</u> is still formed but the major product is the known¹³ cyclopentenetrione derivative <u>5</u>, identified by preparation of an authentic sample. Thus the dication <u>3</u> is unstable to hydrolysis, but is reductively and thermally stable. Its further reactions, aimed at the production of stabilized cyclopentadienyl cations, will be reported elsewhere.

Acknowledgements: We thank the National Science Foundation for support of this work, and for a predoctoral fellowship to T.L. We thank Dr. Michael Y. Chiang for the X-ray structure determinations, and Dr. Craig Wilcox for some studies of the chemistry of 1.

REFERENCES

- 1. King, R.B.; Harman, C.A. Inorg. Chem., 1976, 15, 879.
- Breslow, R., in <u>Topics in Nonbenzenoid Aromatic Chemistry</u>, T. Nozoe, R. Breslow, K. Hafner, S. Ito, and I. Murata, eds., Vol. 1, Hirokawa Pub. Co., Tokyo, 1973, p. 81; Wilcox, C. and Breslow, R. <u>Tetrahedron Letters</u>, 1980, 21, 3241.
- 3. ¹H-NMR(d_8 -toluene, 100^oC): δ 4.19 (m, 2H), 3.39 (s, 1H), 3.11 (m, 6H), 2.64 (m, 4H), 0.99 (t, 6H), 0.90 (t, 6H), 0.88 (t, 6H). ¹³C-NMR(CDCl₃): δ 203.2, 181.5, 165.4, 139.5, 61.0, 46.6, 44.3, 13.9, 13.6. IR (KBr, cm⁻¹): 2965, 2930, 2872, 1738, 1660, 1542, 1452. m.p. 87-88.5^oC (pentane). MS m/e = 309 (M+). UV-VIS (CH₃CN, nm): 500(ϵ 515), 355(ϵ 8200), 255(ϵ 8300). Anal. calcd. for C₁₇H₃₁N₃O₂: C, 65.98; H, 10.10. Found: C, 65.66; H, 9.96.
- 4. Serratosa, F. et al. J. Chem. Soc., Chem. Comm., 1982, 1305.
- 5. ¹H-NMR(CD₃CN): δ 1.38 (t, 24H), 3.69 (q, 8H), 3.93 (q, 8h). ¹³C-NMR(CD₃CN): δ 200.5, 152.2, 148.0, 49.7, 49.4, 13.9, 12.0. IR (KBr, cm⁻¹): 1780, 1733, 1620(Clo₄-), 1454. UV-VIS (CH₂CN, nm): 572.
- 6. $C_{21}H_{40}N_4O^{*2}ClO_4$, Monoclinic, space group C2/c, a = 14.959(3) Å, b = 9.815(3) Å, c = 18.927(3) Å, $\beta = 103.82(1)^{\circ}$, z = 4. 2113 unique reflections with I > $2\sigma(I)$ used in the analysis, R = 0.056. Crystallographic data (for both structures) can be obtained from Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW. Requests should include a complete citation of this communication.
- ¹H-NMR of <u>3</u>[•]2PF₆ identical to that of the perchlorate. IR (KBr, cm⁻¹): 1725, 1583, 1508, 1458, 1435.
- 0.1 M n-Bu₄NClO₄ in freshly distilled CH₃CN, Pt button working electrode. At slower scan rates, waves became irreversible.
- 9. ¹H-NMR(CDCl₃): δ 1.19 (t, 3H), 1.21 (t, 3H), 1.25 (t, 3H), 1.31 (t, 3H), 3.51 (q, 4H), 3.63 (q, 2H), 3.86 (q, 2H). ¹³C-NMR(CD₃CN): δ 13.0, 13.2, 14.8, 15.2 (CH₃); 40.2, 43.7, 46.3, 46.7 (CH₂); 159.9, 162.8, 180.4, 186.4, 195.7. IR (KBr, cm⁻¹): 1783, 1741, 1634. m.p. 82.5-83°C (benzene/pentane). MS m/e = 252(M+). UV (CH₃CN, nm): 253, 305.
- 10. $C_{13}H_{20}N_{2}O_{3}$, Orthorhombic, space group $Pna2_{1}$, a = 24.650(6) Å, b = 9.099(3) Å, c = 6.266(1) Å, z = 4. 1733 unique reflections with I > 2 σ (I) used in the analysis, R = 0.054.
- cf. Wang, Y.; Stucky, G.D.; Williams, J.M. J. Chem. Soc., Perkin 2, 1974, 35; Semmingsen, D. Acta Chem. Scand., 1973, 27, 3961.
- 12. Stadeli, W.; Hollenstein, R.; von Phillipsborn, W. <u>Helv. Chim. Acta</u>, **1977**, <u>60</u>, 948.
- 13. Yamakazi, T.; Oohama, T.; Doiuchi, T.; Takazawa, T. <u>Chem. Pharm. Bull.</u>, 1972, 20, 238, report ¹H-NMR(CDCl₃): δ 3.62, 1.17; IR (KBr, cm⁻¹): 1714, 1682, 1626. We find ¹H-NMR(CDCl₃): δ 3.72, 1.22; IR (KBr, cm⁻¹): 1715, 1624. (Received in USA 21 June 1985)